Wiese, W. (2018). Toward a mature science of consciousness. Frontiers in Psychology, 9. www.frontiersin.org/articles/10.3389/fpsyg.2018.00693 doi:10.3389/fpsyg.2018.00693
[Abstract]In Being No One, Metzinger (2004[2003]) introduces an approach to the scientific study of consciousness that draws on theories and results from different disciplines, targeted at multiple levels of analysis. Descriptions and assumptions formulated at, for instance, the phenomenological, representationalist, and neurobiological levels of analysis provide different perspectives on the same phenomenon, which can ultimately yield necessary and sufficient conditions for applying the concept of phenomenal representation. In this way, the “method of interdisciplinary constraint satisfaction (MICS)” (as it has been called by Weisberg, 2005) promotes our understanding of consciousness. However, even more than a decade after the first publication of Being No One, we still lack a mature science of consciousness. This paper makes the following meta-theoretical contribution: It analyzes the hurdles an approach such as MICS has yet to overcome and discusses to what extent existing approaches solve the problems left open by MICS. Furthermore, it argues that a unifying theory of different features of consciousness is required to reach a mature science of consciousness.
[Citing Place (1956)]  
Citing Place (1956) in context (citations start with an asterisk *):
Subsection 3.2. The Problem of Matching Predicates
* As a reviewer pointed out, it seems that phenomenal properties cannot be identical with properties of neural correlates: my brain is not red when I have an experience as of something red. However, “experienced redness” is not the same as “redness”. As the reviewer pointed out, this is what Place (1956) called the phenomenological fallacy: “the mistake of supposing that when the subject describes his experience, [...] he is describing the literal properties of objects and events on a peculiar sort of internal cinema or television screen” (Place, 1956, p. 49). My brain is not red when I consciously perceive something red, but neither is my conscious experience. My experience has a phenomenal property that allows me to describe what I am seeing as red, but describing this property as “experienced redness” does not entail that it cannot be identical to a neurobiological property. In general, lacking a clear definition of “phenomenal property,” it is impossible to assess whether or not this type of property can be said to be a property of neural processes or structures. Still, demanding that solutions to the problem of matching predicates show how an identity between phenomenological predicates and neurobiological predicates can be established would clearly be too strong. However, solutions should establish more than just co-extensionality ...